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INTRODUCTION

Actinostemma lobatum is a herbaceous annual plant in Asia,        

such as South Korea, China, India, and Thailand (Zheng et al.,    

2020). Historically, the whole plant of A. lobatum was considered    

a folklore medicinal plant, consumed as a diuretic and for the    
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Background: Tissue culture is an important strategy for metabolite accumulation in plants. More-
over, adventitious roots can produce high levels of phytochemicals. Actinostemma lobatum is con-
sumed as a medicinal plant in South Korea, China, India, and Thailand. In this study, we aimed to 
identify the effects of darkness and light on metabolic changes and antioxidant activity in the 
adventitious roots of A. lobatum. 
Methods and Results: To confirm metabolic changes and antioxidant activity, adventitious roots 
of A. lobatum were grown under appropriate conditions and separated into dark and light treatment 
groups. Light conditions were found to more significantly influence the accumulation of natural 
pigments, such as chlorophyll a [0.136 ± 0.001 ㎎·g-1 dry weight (DW)] and total carotenoids     
(0.047 ± 0.001 ㎎·g-1 DW), than dark conditions (0.072 ± 0.001 ㎎·g-1 DW and 0.026 ± 0.003 ㎎·g-1     

DW, respectively). Moreover, the light treatment group had substantially high contents of total phe-
nolic, flavonoid, and rutin compounds (11.273 ± 0.291 gallic acid equivalent (GAE)·㎎·g-1 DW,     
9.943 ± 0.28 quercetin equivalent (QE)·㎎·g-1 DW, and 2.136 ± 0.491 ㎎·g-1 DW, respectively).     
These results revealed that light stimulates the accumulation of secondary metabolites, such as phe-
nolics and flavonoids, and enhances antioxidant activity in the adventitious roots of A. lobatum.
Conclusions: Light conditions can considerably influence the production of health-beneficial 
metabolites in the adventitious roots of A. lobatum. This provides an understanding of metabolism 
in adventitious roots for further experimental studies on environmentally sustainable plant second-
ary metabolite production. In this study, we show that suitable root cultures have the potential to be 
used as supplements in the pharmaceutical and nutraceutical industries.

Key Words: Actinostemma lobatum, Adventitious Root, Exposure of Dark and Light, Phenolics,     

Antioxidant Activities
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treatment of diverse chronic diseases (Kim et al., 2008; Cao et          

al., 2015).

Specifically, several earlier studies reported the anti-oxidative      

(Kim, 2010), anti-thrombotic (Kim et al., 2008),  anti-tumor        

(Fujioka et al., 1996; Li et al., 2012), antifungal (Choi et al.,           

2024), and antimicrobial (Chen et al., 2005) activity in A.         

lobatum extracts, suggesting potential therapeutic applications.     

Lee et al. (2024) reported that the A. lobatum contained a high           

level of flavonoids, such as quercetin and kaempferol, which        

closely correlate with antibiofilm and antihemolytic activities;      

moreover, Cao et al. (2015) isolated triterpene saponins from        

A. lobatum, supporting the inhibition activity of the cytotoxicity.        

Underlying this knowledge, in the present study, we explored        

the effects of light and dark on adventitious roots of A. lobatum.

In vitro tissue cultures are being developed as a potent         

strategy for producing biologically useful phytochemicals     

(Hussain et al., 2022). Especially, the adventitious roots-inducing       

strategy could enhance the production of pharmaceutically      

important metabolites (Khanam et al., 2024), following rapid       

biomass production under sterile conditions (Murthy et al.,       

2024) without gene modifications.

Additionally, previous studies reported that depending on the       

incubation conditions, the accumulation of phytochemicals con-      

siderably impacted plant roots (Park et al., 2022; Yun et al.,          

2022). In other words, due to the convenient strategy and high          

yield of biomass, adventitious root culture, such as eco-friendly        

and sustainable production of phytochemicals, provided a      

convenient strategy and high yield of biomass, highlighting the        

accumulation of secondary metabolites in recent studies. 

For the generation and development of plants, environmental       

factors are essential, including temperature, salt, soil, light,       

water, pH, and oxygen; moreover, they have significant effects        

on the production of secondary metabolites (Park et al., 2024).         

Among them, light is the crucial factor for plant development,         

controlling the production of plant metabolites (Kapoor et al.,        

2018).

Several previous studies revealed that light radiation, direction,       

and intensity cause different accumulations of metabolites in       

plants (Yang et al., 2018). According to  Bungala et al. (2024),           

different exposed LEDs significantly influenced the biomass,      

secondary metabolites, and antioxidant activities in Brassica      

rapa subsp. chinensis, and Park et al. (2024) reported that the          

light irradiation considerably impacted the production of primary       

and secondary metabolites in Althaea officinalis hairy root. 

In plants, phenolic compounds are a large group of secondary         

metabolites that are essential in metabolism (Dwivedi et al.,    

2016) and have been demonstrated to have various activities,    

such as development, signaling, organogenesis, UV protection,    

pathogen defense, and response to biotic stress. (Bauters et al.,    

2021; Pratyusha and Sarada, 2022; Ortiz and Sansinenea, 2023;    

Kwon et al., 2024).

The biological usage of phenolic compounds, which consist    

of polyphenols, flavonoids, and phenylpropanoids as antioxidants,    

is spotlighted, and blocking free radicals and reactive oxygen    

species (ROS) is thus the subject of numerous studies that    

have been the subject of efforts at extracting them (Pereira et    

al., 2016; Porra and Scheer, 2019). In fact, a number of earlier    

studies have revealed the correlation with phenolic compounds    

and antioxidant activities (Fu et al., 2011; Lim et al., 2024).

Oxidative stress causes diverse disorder pathogenesis, including    

cardiovascular diseases, neurological diseases, cancer, and    

respiratory diseases (Rhee, 2006; Pizzino et al., 2017). As a    

result, synthetic antioxidants were invented to prevent oxidation    

in human health, food decay, and the pharmacology industry    

(Oktay et al., 2003).

However, the side effects of synthetic antioxidants have    

affected human health; consequently, natural antioxidants have    

garnered significant interest as alternatives to synthetic antioxi-    

dants (Ito et al., 1983; Pokorný, 2007). Hence, numerous    

studies have revealed the correlation between phytochemicals    

(phenolics, flavonoids, phenylpropanoids, and carotenoids) and    

antioxidant activity (Kähkönen et al., 1999; Moure et al.,    

2001). Based on these considerations, exploration of the natural    

antioxidants should be conducted for the prevention of disease    

and treatment associated with oxidative stress. 

This study aims to understand the impact of dark and light    

exposure on compared the antioxidant activity based on    

differential accumulation of natural pigments and phenolic    

compounds in adventitious roots of A. lobatum.

In the absence of approaches on the influence of light on the    

accumulation of phenolics and antioxidant activities in the    

adventitious roots of A. lobatum, this study could help maximize    

the accumulation of phytochemicals in tissue cultures and the    

potential usage as natural antioxidants.

MATERIALS AND METHODS

1. Sample preparation, adventitious root induction, and    

light treatment

The seeds of the Actinostemma lobatum were collected in    
118
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October 2023 from Nonsan, Chungcheongnam-do, Korea. A      

voucher specimen (NNIBRVP122922) was deposited in the      

Library of Nakdonggang National Institute of Biological      

Resources (NNIBR, Sangju, Korea). The sterilized seeds of A.        

lobatum were germinated in a Murashige and Skoog (MS)        

solid medium (Murashige and Skoog, 1962) at pH 5.8.        

Seedlings were propagated in a growth chamber using the        

same medium under 16/8-h light/dark photoperiod at 25℃.

After 4 weeks, a stem segment (0.5 ㎝) was transferred to          

MS medium with 1.0 ㎎·ℓ-1 indole-3-butyric acid (IBA) and        

kept in the dark to induce adventitious roots. The root samples          

from 6-week-old grown A. lobatum were transferred in a        

Schenk and Hildebrandt (SH) liquid medium (Schenk and       

Hildebrandt, 1972) with 1.0 ㎎·ℓ-1 IBA and grown on a rotary          

shaker in the dark for a further 2 weeks.

For light treatment, the acquired adventitious roots were       

moved into SH liquid medium for 24 h under continuous light          

at 25℃ from cool white fluorescent; conversely, the control        

group remained in full darkness for 24 h. After 2 weeks, the           

samples were harvested, followed by freeze-drying for 72 h.        

After that, a mortar and pestle were used for grinding the          

sample, and powder was used for subsequent metabolite       

analysis and antioxidant activity assays.

2. Assessing chlorophyll and total carotenoid contents      

from A. lobatum

The chlorophyll and total carotenoid contents (TCC) in       

adventitious roots of A. lobatum were assessed according to        

methods from previous reports with slight modifications      

(Sumanta et al., 2014; Porra and Scheer, 2019). A finely         

powdered sample was mixed with 99.9% ethanol and incubated        

at 4℃ for 1 h in the dark. After centrifugation, the supernatant           

was filtered using PTFE syringe filters, followed by repeating        

this three times.

Absorbances were read using a UV-vis spectrophotometer      

(SPECTROstar Nano plate reader, BMG LABTECH., Ortenberg,      

Baden-Württemberg,  Germany), and the contents of chlorophyll       

and TCC were estimated following equations in Table 1        

(Sumanta et al., 2014; Porra and Scheer, 2019). 

3. Relative quantification of total phenolic and flavonoid    

contents 

The total phenolic contents (TPC) were estimated by    

adopting the previous protocol, which monitored the reduction    

rate of Folin-Ciocalteau reagent, from Lim et al. (2024). The    

absorbances were measured at 760 nm. The calibration curve    

of gallic acid (y = 0.0014x – 0.0203, R2 = 0.9997) was used for    

quantification, and the TPC results were represented in terms    

of gallic acid equivalent (GAE)·g-1 sample dry weight (DW). 

The total flavonoid contents (TFC) were determined, followed    

by the previously reported method, which is based on flavonoid    

combining characteristics with aluminum, from Lim et al. (2024).    

The absorbances were measured at 415 ㎚. The calibration    

curve of quercetin (y = 0.0017x – 0.0054, R2 = 0.9996) was    

used for quantification, and the TFC results were presented in    

terms of quercetin equivalent (QE)·g-1 DW.

4. Determination of individual phenolic compounds by    

high-performance liquid chromatography (HPLC)

 Individual phenolic compounds in adventitious roots of A.    

lobatum were determined following the protocol described by    

Lim et al. (2024) with slight modifications. Briefly, 0.1 g of    

dried sample powder was mixed with 2 ㎖ of 70% MeOH,    

followed by centrifugation and filtering, and the extracts were    

directly used for HPLC analysis. The instrument was    

composed of Agilent 1260 Infinity Ⅱ systems, a C18 column    

(250 ㎜ × 4.6 ㎜, 5 ㎛, RStech, Daejeon, Korea), and mobile    

phases of 0.2% acetic acid in distilled water and 99.9%    

MeOH. The flow rate, column temperature, and wavelength    

were set to 1 ㎖·min-1, 30℃, and 280 ㎚, respectively. A    

detailed gradient program was performed following the    

protocol described by Lim et al. (2024).

5. In vitro antioxidant assays

In vitro antioxidant activities were estimated using 6 different    

concentrations of sample (ranging from 62.5, 125, 250, 500,    

Table 1. Equation for determining concentrations of chlorophyll a, chlorophyll b, and total carotenoid.

Equations

Chlorophyll a (mg·g-1 DW1)) (13.36 × A664
2) – 5.19 × A649) × S

Chlorophyll b (mg·g-1 DW) (27.43 × A649 – 8.12 × A664) × S

Total Carotenoid (mg·g-1 DW) {(1000 × A470 – 2.13 × Chl a – 97.63 × Chl b) / 209} × S
1)DW; dry weight of sample, 2)Ax; absorbance, Chl a; chlorophyll a, Chl b; chlorophyll b, S; sample concentraion.
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1000, to 2,000 ㎍·㎖-1) and ascorbic acid as a positive control.          

The  2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis     

(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging    

activity in adventitious roots of A. lobatum were performed        

following a protocol from an earlier report by Lim et al. (2024).           

The required absolute 50% inhibitory concentration (IC50) was       

calculated based on dose-response curves plotted using      

absorbance data and expressed in ㎎·㎖-1. Reducing power was        

assessed by monitoring the conversion of ferric ion, and        

methodology was adopted from Lim et al. (2024).

6. Statistical analysis

All values were expressed as the mean ± standard deviation         

(SD) based on triplicate data. Statistical analysis was performed        

by using SPSS 20 (SPSS Inc., Chicago, IL, USA), and the          

significances were determined by the t-test and Duncan’s       

Multiple Range Test (DMRT) at the 5% level (p < 0.05).

RESULTS

1. Assessment of natural pigment under dark and light        

exposure 

Chlorophyll contents from the adventitious roots of A.       

lobatum were significantly different under the dark and light-        

exposed cultures. The adventitious root phenotypic color      

appeared to be a light brown hue in the dark-grown culture,          

whereas the light-grown culture showed a greenish color (Fig. 1).

Although there is no significant difference between the dark    

and light treatment groups in the contents of chlorophyll b, the    

light-exposed cultures significantly accumulated about 2.0    

times higher than dark-exposed cultures in chlorophyll a (p <    

0.05) (Table 2). In addition, the light-exposed cultures (0.047 ±    

0.001 ㎎·g-1 DW) contained significantly higher TCC than in    

the dark-exposed cultures (0.026 ± 0.003 ㎎·g-1 DW) (Table 2).    

From these results, the exposure to dark and light influenced    

significant changes to natural pigment in the adventitious roots    

of A. lobatum.

2. Quantification of TPC and TFC contents from A. lobatum

As shown in Table 3, light-exposed adventitious roots had a    

greater accumulation of TPC and TFC than dark-exposed    

adventitious roots with significant differences. Specifically,    

under light conditions, the TPC (11.273 ± 0.291 GAE·㎎·g-1    

DW) and TFC (9.943 ± 0.28 QE·㎎·g-1 DW) achieved 1.47    

and 2.05 times higher than under the dark conditions (7.665 ±    

0.291 GAE·㎎·g-1 DW and 4.855 ± 0.074 QE·㎎·g-1 DW,    

respectively). These results suggest that light significantly    

influenced the phenolic and flavonoid contents in the    

adventitious roots of A. lobatum.

3. Determination of individual phenolic contents

Subsequently, we identified and quantified individual phenolic    

compounds from the adventitious roots of A. lobatum. Among    

the identified compounds, (-)-epicatechin, benzoic acid, and    

kaempferol were not identified as having significant differences;    

Table 2. Effects of dark and light on the accumulation of chlorophyll a, b, and total carotenoid contents from A. lobatum.

Chlorophyll a Contents (㎎·g-1 DW1)) Chlorophyll b Contents (㎎·g-1 DW) TCC3) (㎎·g-1 DW)

Dark 0.072±0.001 0.051±0.004 0.026±0.003

Light 0.136±0.001* 0.057±0.003ns2) 0.047±0.001*

1)DW; dry weight of sample, 2)ns; not significant, 3)TCC; total carotenoid content. Values are the means ± SD, and the statistically significant    
differences were determined by t-test at the 5% level (*p < 0.05). 

Table 3. Total phenolic and flavonoid contents from dark and 
light treated adventitious roots of A. lobatum

Treatments TPC1) (GAE·㎎·g-1 DW) TFC2) (QE·㎎·g-1 DW)

Dark 7.665±0.291 4.855±0.074

Light 11.273±0.291* 9.943±0.28*

1)TPC; total phenolic content, GAE; gallic acid equivalent, DW; dry    
weight of sample; 2)TFC; total flavonoid content, QE; quercetin    
equivalent. Values are the means ± SD, and the statistically significant    
differences were determined by t-test at the 5% level (*p < 0.05).

Fig. 1. Adventitious root formation of A. lobatum. (A) adventitious 
roots dark-exposed conditions and (B) adventitious roots 
light-exposed conditions.
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however, sinapic acid that belongs to phenylpropanoid was not        

detected in the dark-exposed sample, whereas the light-exposed       

sample was 0.09 ± 0.004 ㎎·g-1 DW. Interestingly, rutin, which         

belongs to flavonoids, was accumulated higher in light-exposed       

roots of A. lobatum (2.136 ± 0.491 ㎎·g-1 DW) than in dark-           

exposed conditions (0.329 ± 0.065 ㎎·g-1 DW).

Although (-)-epicatechin and kaempferol were not confirmed      

to have a significant difference between dark and light        

conditions, we can assume that light could induce the accumulation         

of phenylpropanoid and flavonoids in adventitious roots of A.        

lobatum.

4. In vitro antioxidant activities

The DPPH, ABTS, and reducing power were efficient assays        

to evaluate antioxidant activity in a fast and accurate manner         

and were performed to estimate the effect of dark and light on           

antioxidant activity from the adventitious roots of A. lobatum.

First, the increase in concentration led to an increase in         

scavenging activity in both, and the radical scavenging activity        

of DPPH and ABTS was greater in exposed light samples.         

Although there were no statistical differences between the dark        

and light-exposed groups at concentrations of 62.5 and 125 ㎍·㎖-1,    

statistical differences could be seen at a concentration of 250    

㎍·㎖-1. (Fig. 2).

At a concentration of 2,000 ㎍·㎖-1, in the DPPH assay,    

light-exposed A. lobatum roots (80.07 ± 0.93%) achieved    

significantly higher activity than dark-exposed (44.49 ± 0.56%)    

(Fig. 2A), and similarly in the ABTS assay, exposure to the    

light (90.56 ± 0.67%) was significantly more influential to    

scavenging activity than exposure to the dark (76.07 ± 0.29%)    

(Fig. 2B).

As shown in Table 5, both in DPPH and ABTS, the IC50    

value of light-exposed samples (1.157 ± 0.013 ㎎·㎖-1 and 0.88    

± 0.006 ㎎·㎖-1, respectively) was estimated to be higher in    

Table 4. Accumulation of individual phenolic compounds from dark and light treated adventitious roots of A. lobatum.

Treatments
Phenolic Compound Contents (㎎·g-1 DW1))

(-)-Epicatechin Sinapic acid Benzoic acid Rutin Kaempferol

Dark 0.063±0.002 ND 0.004±0.001 0.329±0.065 0.018±0.000

Light 0.069±0.004ns 0.09±0.004* 0.004±0.001ns 2.136±0.491* 0.018±0.000ns

1)DW; dry weight of sample; ND; not-detected, ns; not significant. Values are the means ± SD, and the statistically significant differences were    
determined by t-test at the 5% level (*p < 0.05). 

Fig. 2. In vitro antioxidant activities from dark and light treated adventitious roots of A. lobatum. Values are the means ± SD, and 
(A) DPPH-radical scavenging activity, and (B) ABTS-radical scavenging activity. X-axis and Y-axis represent the concentration of 
extracts (㎍·㎖-1) and inhibition activity (%), respectively. The values with the letter “a” represent the highest using Duncan’s 
Multiple Range Test (DMRT, p < 0.05).

Table 5. IC50 value of DPPH and ABTS radical from dark and 
light treated adventitious roots of A. lobatum.

Treatments IC50 value of DPPH (㎎·㎖-1) IC50 value of ABTS (㎎·㎖-1)

Dark 2.235±0.013 1.109±0.004

Light 1.157±0.013* 0.88±0.006*

Values are the means ± SD, and the statistically significant differences    
were determined by t-test at the 5% level (*p < 0.05).
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efficiency than dark-exposed samples (2.235 ± 0.013 ㎎·㎖-1       

and 1.109 ± 0.004 ㎎·㎖-1).

Due to the use of crude extracts, the low sample concentrations          

likely contained relatively fewer biologically active metabolites.      

Consequently, no significant differences were observed at lower       

concentrations. However, a concentration-dependent increase in     

activity was evident. Notably, at a concentration of 2,000 ㎍·㎖⁻1,         

light exposure significantly enhanced the reducing power,      

indicating a higher degree of Fe³⁺ to Fe²⁺ conversion.

Specifically, the adventitious roots of A. lobatum under light        

conditions (0.22 ± 0.01) showed higher efficiency than under        

dark conditions (0.18 ± 0.01) (Fig. 3).

Based on these results, the exposure of the light to         

adventitious roots of A. lobatum significantly influenced the       

accumulation of phytochemicals, such as chlorophylls, carotenoids,      

phenolics, flavonoids, and phenylpropanoids, and at the same       

time, resulted in a higher efficiency of antioxidant activity.

DISCUSSION

Environmental factors significantly influenced not only the      

generation but also the accumulation of metabolites from plants        

(Park et al., 2024). In fact, the strategies regulating light have          

been reported to increase the metabolites in plants (Do et al.,          

2023; Park et al., 2024). In addition, numerous previous        

studies have revealed the superiority of inducing adventitious       

root cultures to produce plant secondary metabolites (Rahmat       

and Kang, 2019; Khanam et al., 2022).

In this study, we aimed to discover that dark and light          

caused prominent effects on the accumulation of bioactive       

compounds, following higher antioxidant activities in A.      

lobatum adventitious root cultures.

As natural pigments, chlorophylls and carotenoids are well    

known for various biological activities. In our results, under the    

light conditions, significantly enhanced chlorophyll and carotenoid    

contents in adventitious roots of A. lobatum by regulating light-    

mediated photosynthesis.

Park et al. (2024) demonstrated that the light condition    

definitely induced the chlorophyll, carotenoid, and phenylpropanoid    

biosynthetic pathways in hairy roots of A. officinalis, which    

were consistent with our results. Moreover, Lee et al. (2023)    

reported that the light treatment significantly impacted the    

production of rosmaric acid, TPC, antioxidant activities, and    

antimicrobial activities in Perilla frutescens. Namely, the light    

treatments are anticipated to induce the production of phyto-    

chemicals and beneficial effects in coincidence.

A previous study reported the bioactivity of chlorophyll,    

such as anti-cancer, interruption of cardiovascular disease, and    

other chronic diseases (Pareek et al., 2017). Carotenoids defend    

against oxidative damage to chlorophyll and assist the    

chlorophyll as photosynthetic pigments (Vechtel et al., 1992;    

Sumanta et al., 2014). They should be consumed via diet due    

to their essential features for humans, and numerous studies    

have revealed the excellent usage of carotenoids as antioxidants    

(Muller and Bohm, 2011; Jiří et al., 2024).

In other words, exposure to light could lead to the significant    

accumulation of chlorophyll and carotenoids, resulting in    

improved photosynthetic systems and their bioactivity.

According to previous reports, they suggested that the light    

strongly influenced the activation of phenolic biosynthetic    

pathways (Liu et al., 2021; Yun et al., 2022). Light exposure    

roots of A. lobatum contained significantly higher secondary    

metabolites (carotenoids, phenolics, and flavonoids), which are    

the main scavengers reacting to oxidative stress (Moure et al.,    

2001).

Carotenoids, phenolics, and flavonoids have had their bioactivity    

proven by previous reports (Bungala et al., 2024; Jiří et al.,    

2024; Lim et al., 2024). In detail, sinapic acid and rutin were    

significantly accumulated under light than dark conditions.    

Among them, rutin was achieved at approximately 6.49 times    

higher in light conditions, and Prasad et al. (2019) demonstrated    

the various bioactive properties (antioxidant, antimicrobial, anti-    

inflammatory, anticancer, cardioprotective, hepatoprotective,   

and antidiabetic activity) and the usage in nutraceuticals of    

rutin. 

Light treatment in adventitious roots of A. lobatum considerably    

contributed to the production of chlorophyll, total carotenoid,    

Fig. 3. Effects of dark and light on the antioxidant activity of 
reducing power from adventitious roots of A. lobatum. 
Results are represented by means ± SD, and the letter 
“a” shows the highest by One-way ANOVA using 
Duncan’s Multiple Range Test (DMRT, p < 0.05).
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phenolic, and flavonoid, and the improved antioxidant activities       

might be due to the increase of secondary metabolites (Pizzino         

et al., 2017). Indeed, several previous reports revealed a        

remarkable correlation between antioxidant activities and total      

phenolic contents in plants (Kähkönen et al., 1999; Fu et al.,          

2011).

In conclusion, the light treatment substantially promoted the       

biosynthesis of phytochemicals and augmented antioxidant     

responses, indicating its pivotal role in metabolic regulation       

and antioxidant activity in the adventitious roots of A. lobatum.

This strategy might be helpful for the enhancement of        

valuable bioactive compounds in the adventitious roots of A.        

lobatum and utilized for the optimization of in vitro cultures in          

the adventitious roots of A. lobatum, contributing to the        

pharmaceutical and nutraceutical industries. 
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